EMISSION CONTROL SYSTEM

PURPOSE

The emission control systems are installed to reduce the amount of CO, HC and NOx exhausted from the engine ((3) and (4)), to prevent the atmospheric release of blow–by gas–containing HC (1) and evaporated fuel containing HC being released from the fuel tank (2).

The function of each system is shown in these table.

<table>
<thead>
<tr>
<th>System</th>
<th>Abbreviation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Positive Crankcase Ventilation</td>
<td>PCV</td>
<td>Reduces HC</td>
</tr>
<tr>
<td>(2) Evaporative Emission Control</td>
<td>EVAP</td>
<td>Reduces evaporated HC</td>
</tr>
<tr>
<td>(3) Exhaust Gas Recirculation</td>
<td>EGR</td>
<td>Reduces NOx</td>
</tr>
<tr>
<td>(4) Three–Way Catalytic Converter</td>
<td>TWC</td>
<td>Reduces HC, CO and NOx</td>
</tr>
<tr>
<td>(5) Sequential Multiport Fuel injection*</td>
<td>SFI</td>
<td>Injects a precisely timed, optimum amount of fuel for reduced exhaust emissions</td>
</tr>
</tbody>
</table>

Remark: * For inspection and repair of the SFI system, refer to the SF section of this manual.
POSITIVE CRANKCASE VENTILATION (PCV) SYSTEM INSPECTION

1. REMOVE PCV VALVE
 (a) Disconnect the PCV hose from the PCV valve.
 (b) Remove the PCV valve.

2. INSTALL CLEAN HOSE TO PCV VALVE
3. INSPECT PCV VALVE OPERATION
 (a) Blow air into the cylinder head side, and check that air passes through easily.

 CAUTION:
 Do not suck air through the valve.
 Petroleum substances inside the valve are harmful.

 (b) Blow air into the intake manifold side, and check that air passes through with difficulty.

 If operation is not as specified, replace the PCV valve.

4. REMOVE CLEAN HOSE FROM PCV VALVE
5. REINSTALL PCV VALVE

6. VISUALLY INSPECT HOSES, CONNECTIONS AND GASKETS
 Check for cracks, leaks or damage.
EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM

INSPECTION

1. VISUALLY INSPECT LINES AND CONNECTIONS
 Look for loose connections, sharp bends or damage.

2. VISUALLY INSPECT FUEL TANK
 Look for deformation, cracks or fuel leakage.

3. VISUALLY INSPECT FUEL TANK CAP
 Check if the cap and/or gasket are deformed or damaged.
 If necessary, repair or replace the cap.

4. REMOVE CHARCOAL CANISTER

5. VISUALLY INSPECT CHARCOAL CANISTER
 Look for cracks or damage.

6. CHECK FOR CLOGGED FILTER, AND STUCK CHECK VALVE AND DIAPHRAGM
 (a) Install the plug to port E.
 (b) While holding port B closed, blow air (1.76 kPa, 18 gf/cm², 0.26 psi) into port A and check that air flows from port D.
 (c) While holding port B and port D closed, blow air (1.76 kPa, 18 gf/cm², 0.26 psi) into port A and check that air does not flow from port C.
(d) Apply vacuum (3.43 kPa, 25.7 mmHg, 1.01 in.Hg) to port B, check that the vacuum does not decrease when port C is closed, and check that the vacuum decreases when port C is released.

(e) While holding port C closed, apply vacuum (3.43 kPa, 25.7 mmHg, 1.01 in.Hg) to port A and check that air flows into port B. If a problem is found, replace the charcoal canister.

(f) Remove the plug.

7. REMOVE VSV FOR EVAP
8. INSPECT VSV FOR EVAP
 (See page SF–52)
9. REINSTALL VSV FOR EVAP
10. REMOVE VSV FOR VAPOR PRESSURE SENSOR
11. INSPECT VSV FOR VAPOR PRESSURE SENSOR
 (See page SF–56)
12. REINSTALL VSV FOR VAPOR PRESSURE SENSOR
13. INSPECT VAPOR PRESSURE SENSOR
 (See page SF–58)
14. REINSTALL CHARCOAL CANISTER
EXHAUST GAS RECIRCULATION (EGR) SYSTEM
INSPECTION

1. INSPECT EGR SYSTEM
(See page DI–118)

2. INSPECT EGR VALVE POSITION SENSOR
(a) Inspect the resistance of the EGR valve position sensor.
 (1) Disconnect the EGR valve position sensor connec-
 tor.
 (2) Using an ohmmeter, measure the resistance be-
 tween the terminals VC and E2.
 Resistance: 1.5 – 4.3 kΩ
 If the resistance is not as specified, replace the EGR valve posi-
 tion sensor.
 (3) Reconnect the EGR valve position sensor connec-
 tor.
(b) Inspect the power output voltage of the EGR valve posi-
 tion sensor.
 (1) Disconnect the vacuum hose from the EGR valve.
 (2) Turn the ignition switch ON.
 (3) Connect a voltmeter to terminals VC and E2 of the
 ECU, and measure the power source voltage.
 Voltage: 4.5 – 5.5 V
 (4) Connect a voltmeter to terminals EGLS and E2 of
 the ECU, and measure the power outlet voltage un-
 der the following conditions:
 • Using the MITYVAC (Hand–Held Vacuum
 Pump), apply a vacuum (17.3 kPa, 130
 mmHg, 5.1 in.Hg) to the EGR valve.
 Voltage: 3.2 – 5.1 V
 • Release the vacuum from the EGR valve.
 Voltage: 0.4 – 1.6 V
 If the voltage is not as specified, replace the EGR valve position
 sensor.
 (5) Reconnect the vacuum hose to the EGR valve.

3. REMOVE EGR POSITION SENSOR
Remove the 3 nuts and EGR valve position sensor from the
EGR valve.
 Torque: 2 N·m (20 kgf-cm, 17 in.-lbf)

4. REINSTALL EGR POSITION SENSOR
Installation is the reverse order of removal.
5. REMOVE EGR VALVE
(a) Remove the EGR pipe.
 • Remove the 4 nuts, EGR pipe and 2 gaskets.
HINT:
Install 2 new gaskets.
 Torque: 12 N·m (120 kgf·cm, 9 ft·lbf)
(b) Disconnect the EGR gas temperature sensor connector and clamp.
(c) Remove the EGR valve.
 (1) Disconnect these hoses and connector:
 • EVAP hose from EGR valve hook
 • Vacuum hose from EGR valve
 • EGR valve position sensor connector
 (2) Remove the 3 nuts, EGR valve and gasket.
HINT:
Install a new gasket.
 Torque: 12 N·m (120 kgf·cm, 9 ft·lbf)
(d) Remove the EGR gas temperature sensor.
 Torque: 20 N·m (200 kgf·cm, 14 ft·lbf)
6. INSPECT EGR VALVE
Check for sticking and heavy carbon deposits.
If a problem is found, replace the EGR valve.
7. REINSTALL EGR VALVE
Installation is the reverse order of removal.
8. REMOVE VCV
9. INSPECT VCV
(a) Connect the MITYVAC (Hand–Held Vacuum Pump) to port S of the VCV.
(b) Plug port Z completely with fingers.
(c) Perform pumping 3 times and apply vacuum as shown in the illustration.
(d) Stop the performing pumping and check the indicated value of the MITYVAC after about 10 seconds.
 Standard value:
 15 – 24 kPa (112 – 180 mmHg, 4.4 – 7.1 in.Hg)
If the indicated value is not as specified, replace the VCV.
10. REINSTALL VCV
11. INSPECT VSV FOR EGR
(See page SF–50)
THREE–WAY CATALYTIC CONVERTER (TWC) SYSTEM

INSPECTION

1. CHECK TWC FOR DENTS OR DAMAGE
 If any part of the protector is damaged or dented to the extent that it contacts the three–way catalytic convert-
 er, repair or replace it.

2. CHECK EXHAUST PIPE CONNECTIONS FOR
 LOoseness OR DAMAGE

3. CHECK EXHAUST PIPE CLAMPS FOR WEAKNESS, CRACKS OR DAMAGE

4. CHECK HEAT INSULATOR FOR DAMAGE

5. CHECK FOR ADEQUATE CLEARANCE BETWEEN CATALYTIC CONVERTER AND HEAT
 INSULATOR
THREE–WAY CATALYTIC CONVERTER (TWC) SYSTEM INSPECTION

1. CHECK TWC FOR DENTS OR DAMAGE
If any part of the protector is damaged or dented to the extent that it contacts the three–way catalytic converter, repair or replace it.

2. CHECK EXHAUST PIPE CONNECTIONS FOR LOoseness OR DAMAGE

3. CHECK EXHAUST PIPE CLAMPS FOR WEAKNESS, CRACKS OR DAMAGE

4. CHECK HEAT INSULATOR FOR DAMAGE

5. CHECK FOR ADEQUATE CLEARANCE BETWEEN CATALYTIC CONVERTER AND HEAT INSULATOR
REPLACEMENT

1. REMOVE CONVERTER
 (a) Jack up the vehicle.
 (b) Check that the converter is cool.
 (c) Remove the 2 bolts and exhaust pipe stay.
 Torque: 33 N·m (330 kgf·cm, 24 ft·lbf)
 (d) Remove the 2 bolts, and disconnect the bracket.
 Torque: 33 N·m (330 kgf·cm, 24 ft·lbf)
 (e) Remove the 2 bolts and 2 nuts holding the front exhaust pipe to the center exhaust pipe.
 Torque: 56 N·m (570 kgf·cm, 41 ft·lbf)
 (f) Remove the 4 nuts holding the front exhaust pipe to the exhaust manifolds.
 Torque: 62 N·m (630 kgf·cm, 46 ft·lbf)
 (g) Remove the front exhaust pipe (converter) and 3 gaskets.

HINT:
At the time of installation, please refer to the following items.
Install 3 new gaskets.

2. INSTALL CONVERTER
 Installation is the reverse order of removal.